Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1011829, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620036

RESUMO

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.

2.
Front Cell Dev Biol ; 10: 1070599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568985

RESUMO

The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.

3.
Viruses ; 14(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36560654

RESUMO

Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively.


Assuntos
Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/química , Tomografia por Raios X/métodos , Capsídeo
4.
Mol Microbiol ; 118(4): 295-308, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35974704

RESUMO

Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.


Assuntos
DNA de Cadeia Simples , Parvovirus , DNA de Cadeia Simples/metabolismo , Replicação Viral/fisiologia , Parvovirus/genética , Parvovirus/metabolismo , Núcleo Celular/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Poro Nuclear/metabolismo , Membrana Nuclear/metabolismo , Proteínas do Capsídeo/genética , Fosfolipases/metabolismo
5.
PLoS Pathog ; 18(4): e1010353, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395063

RESUMO

Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication.


Assuntos
Infecções por Parvoviridae , Parvovirus , Linhagem Celular , Cromatina , Humanos , Parvovirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
6.
J Gen Physiol ; 154(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35275193

RESUMO

Gap junctions are intercellular channels that permit the transfer of ions and small molecules between adjacent cells. These cellular junctions are particularly dense in the retinal pigment epithelium (RPE), and their contribution to many retinal diseases has been recognized. While gap junctions have been implicated in several aspects of RPE physiology, their role in shaping the electrical properties of these cells has not been characterized in mammals. The role of gap junctions in the electrical properties of the RPE is particularly important considering the growing appreciation of RPE as excitable cells containing various voltage-gated channels. We used a whole-cell patch clamp to measure the electrical characteristics and connectivity between RPE cells, both in cultures derived from human embryonic stem cells and in the intact RPE monolayers from mouse eyes. We found that the pharmacological blockade of gap junctions eliminated electrical coupling between RPE cells, and that the blockade of gap junctions or Cx43 hemichannels significantly increased their input resistance. These results demonstrate that gap junctions function in the RPE not only as a means of molecular transport but also as a regulator of electrical excitability.


Assuntos
Conexinas , Epitélio Pigmentado da Retina , Animais , Transporte Biológico , Conexinas/fisiologia , Junções Comunicantes/metabolismo , Mamíferos/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo
7.
PLoS Pathog ; 17(12): e1010132, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910768

RESUMO

Herpes simplex virus capsids are assembled and packaged in the nucleus and move by diffusion through the nucleoplasm to the nuclear envelope for egress. Analyzing their motion provides conclusions not only on capsid transport but also on the properties of the nuclear environment during infection. We utilized live-cell imaging and single-particle tracking to characterize capsid motion relative to the host chromatin. The data indicate that as the chromatin was marginalized toward the nuclear envelope it presented a restrictive barrier to the capsids. However, later in infection this barrier became more permissive and the probability of capsids to enter the chromatin increased. Thus, although chromatin marginalization initially restricted capsid transport to the nuclear envelope, a structural reorganization of the chromatin counteracted that to promote capsid transport later. Analyses of capsid motion revealed that it was subdiffusive, and that the diffusion coefficients were lower in the chromatin than in regions lacking chromatin. In addition, the diffusion coefficient in both regions increased during infection. Throughout the infection, the capsids were never enriched at the nuclear envelope, which suggests that instead of nuclear export the transport through the chromatin is the rate-limiting step for the nuclear egress of capsids. This provides motivation for further studies by validating the importance of intranuclear transport to the life cycle of HSV-1.


Assuntos
Transporte Biológico Ativo/fisiologia , Capsídeo/metabolismo , Cromatina/metabolismo , Membrana Nuclear/metabolismo , Simplexvirus/metabolismo , Animais , Chlorocebus aethiops , Herpes Simples , Células Vero , Replicação Viral/fisiologia
8.
Sci Rep ; 11(1): 21698, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737404

RESUMO

With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.


Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/metabolismo , Proteínas de Membrana/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos , Humanos , Proteínas de Membrana/fisiologia , Plasmídeos , Proteínas Virais/genética , Vírion/metabolismo , Montagem de Vírus , Replicação Viral
9.
Viruses ; 13(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34372512

RESUMO

Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.


Assuntos
Núcleo Celular/virologia , Interações entre Hospedeiro e Microrganismos/genética , Parvovirus/genética , Parvovirus/fisiologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Camundongos , Infecções por Parvoviridae/virologia , Replicação Viral/genética , Replicação Viral/fisiologia
10.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748386

RESUMO

Parvoviruses are an important platform for gene and cancer therapy. Their cell entry and the following steps, including nuclear import, are inefficient, limiting their use in therapeutic applications. Two models exist on parvoviral nuclear entry: the classical import of the viral capsid using nuclear transport receptors of the importin (karyopherin) family or the direct attachment of the capsid to the nuclear pore complex leading to the local disintegration of the nuclear envelope. Here, by laser scanning confocal microscopy and in situ proximity ligation analyses combined with coimmunoprecipitation, we show that infection requires importin ß-mediated access to the nuclear pore complex and nucleoporin 153-mediated interactions on the nuclear side. The importin ß-capsid interaction continued within the nucleoplasm, which suggests a mixed model of nuclear entry in which the classical nuclear import across the nuclear pore complex is accompanied by transient ruptures of the nuclear envelope, also allowing the passive entry of importin ß-capsid complexes into the nucleus.IMPORTANCE Parvoviruses are small DNA viruses that deliver their DNA into the postmitotic nuclei, which is an important step for parvoviral gene and cancer therapies. Limitations in virus-receptor interactions or endocytic entry do not fully explain the low transduction/infection efficiency, indicating a bottleneck after virus entry into the cytoplasm. We thus investigated the transfer of parvovirus capsids from the cytoplasm to the nucleus, showing that the nuclear import of the parvovirus capsid follows a unique strategy, which differs from classical nuclear import and those of other viruses.


Assuntos
Infecções por Parvoviridae/metabolismo , Parvovirus/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Linhagem Celular , Núcleo Celular/virologia , Citoplasma/metabolismo , Citosol/metabolismo , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Parvovirus/imunologia , Internalização do Vírus , Replicação Viral , alfa Carioferinas/metabolismo
11.
Viruses ; 11(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614678

RESUMO

During lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope. Our data demonstrated a gradual increase in chromatin marginalization, and the kinetics of chromatin smoothening around the viral replication compartments correlated with their expansion. We also observed a gradual transfer of capsids to the nuclear envelope. Later in the infection, random walk modeling indicated a gradually faster transport of capsids to the nuclear envelope that correlated with an increase in the interchromatin channels in the nuclear periphery. Our study reveals a stepwise and time-dependent mechanism of herpesvirus nuclear egress, in which progeny viral capsids approach the egress sites at the nuclear envelope via interchromatin spaces.


Assuntos
Cromatina/virologia , Infecções por Herpesviridae/patologia , Herpesvirus Humano 1 , Liberação de Vírus , Animais , Linhagem Celular , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Chlorocebus aethiops , Cromatina/ultraestrutura , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/ultraestrutura , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Tomografia por Raios X , Células Vero , Replicação Viral
12.
Sci Rep ; 8(1): 1152, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348472

RESUMO

Parvoviral genome translocation from the plasma membrane into the nucleus is a coordinated multistep process mediated by capsid proteins. We used fast confocal microscopy line scan imaging combined with image correlation methods including auto-, pair- and cross-correlation, and number and brightness analysis, to study the parvovirus entry pathway at the single-particle level in living cells. Our results show that the endosome-associated movement of virus particles fluctuates from fast to slow. Fast transit of single cytoplasmic capsids to the nuclear envelope is followed by slow movement of capsids and fast diffusion of capsid fragments in the nucleoplasm. The unique combination of image analyses allowed us to follow the fate of intracellular single virus particles and their interactions with importin ß revealing previously unknown dynamics of the entry pathway.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Núcleo Celular/virologia , Citosol/virologia , Parvovirus Canino/metabolismo , Vírion/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Gatos , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citosol/metabolismo , Citosol/ultraestrutura , Células Epiteliais , Corantes Fluorescentes/química , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica , Microscopia Confocal/métodos , Oócitos/metabolismo , Oócitos/ultraestrutura , Oócitos/virologia , Compostos Orgânicos/química , Parvovirus Canino/ultraestrutura , Espectrometria de Fluorescência/métodos , Vírion/ultraestrutura , Xenopus laevis , beta Carioferinas/genética , beta Carioferinas/metabolismo
13.
Sci Rep ; 7(1): 3692, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623258

RESUMO

Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes simplex virus 1-sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Fenômenos Fisiológicos Virais , Liberação de Vírus , Animais , Transporte Biológico , Biomarcadores , Linhagem Celular , Núcleo Celular , Feminino , Histonas/metabolismo , Camundongos , Microscopia Confocal
14.
Sci Rep ; 6: 28844, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27349677

RESUMO

Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. We used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gaps frequently contained viral nucleocapsids. These results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.


Assuntos
Linfócitos B/virologia , Cromatina/virologia , Herpesvirus Humano 1/fisiologia , Vírion/fisiologia , Animais , Linfócitos B/metabolismo , Linfócitos B/ultraestrutura , Linhagem Celular , Cromatina/metabolismo , Cromatina/ultraestrutura , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Imagem com Lapso de Tempo/métodos , Tomografia por Raios X , Vírion/genética , Replicação Viral/genética
15.
Phys Rev E ; 93: 043309, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176430

RESUMO

From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesoscopic scheme gives rise to an expression for the permeability of a thin membrane as a function of a mesoscopic transmission parameter. In a microscopic model, the mean waiting time for a passage of a particle through the membrane is in accordance with this permeability. Numerical results computed with the mesoscopic scheme are then compared successfully with analytical solutions derived in a macroscopic scale, and the membrane model introduced here is used to simulate diffusive transport between the cell nucleus and cytoplasm through the nuclear envelope in a realistic cell model based on fluorescence microscopy data. By comparing the simulated fluorophore transport to the experimental one, we determine the permeability of the nuclear envelope of HeLa cells to enhanced yellow fluorescent protein.

16.
J Virol ; 90(8): 4059-4066, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842481

RESUMO

UNLABELLED: The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging andin situproximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene expression and the completion of the viral life cycle. IMPORTANCE: Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epigenetic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposition of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regulation of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy.


Assuntos
Cromatina/virologia , Genoma Viral , Histonas/metabolismo , Infecções por Parvoviridae/virologia , Parvovirus Canino/genética , Regiões Promotoras Genéticas , Acetilação , Animais , Gatos , Linhagem Celular , DNA Viral/metabolismo , Epigênese Genética , Regulação Viral da Expressão Gênica , Lisina/metabolismo , Microscopia Confocal , Parvovirus Canino/metabolismo , Integração Viral
17.
Eur J Pharm Biopharm ; 70(1): 66-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18555675

RESUMO

Despite recent advances in cancer therapy, many malignant tumors still lack effective treatment and the prognosis is very poor. Paclitaxel is a potential anticancer drug, but its use is limited by the facts that paclitaxel is a P-gp substrate and its aqueous solubility is poor. In this study, three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology was evaluated in vitro as a way of enhancing delivery of paclitaxel. Paclitaxel was incorporated both in biotinylated (BP) and non-biotinylated (LP) PEG-PLA nanoparticles by the interfacial deposition method. Small (mean size approximately 110 nm), spherical and slightly negatively charged (-10 mV) BP and LP nanoparticles achieving over 90% paclitaxel incorporation were obtained. The successful biotinylation of nanoparticles was confirmed in a novel streptavidin assay. BP nanoparticles were targeted in vitro to brain tumor (glioma) cells (BT4C) by three-step avidin-biotin technology using transferrin as the targeting ligand. The three-step targeting procedure increased the anti-tumoral activity of paclitaxel when compared to the commercial paclitaxel formulation Taxol and non-targeted BP and LP nanoparticles. These results indicate that the efficacy of paclitaxel against tumor cells can be increased by this three-step targeting method.


Assuntos
Antineoplásicos/farmacologia , Avidina/metabolismo , Portadores de Fármacos , Glioma/patologia , Nanopartículas , Neoplasias/patologia , Paclitaxel/farmacologia , Poliésteres/química , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Relação Dose-Resposta a Droga , Glioma/metabolismo , Humanos , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo , Tamanho da Partícula , Poliésteres/metabolismo , Polietilenoglicóis/metabolismo , Ratos , Solubilidade , Tecnologia Farmacêutica/métodos , Fatores de Tempo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...